انثى من زمن النقاء
عدد المساهمات : 20012 نقاط الامتيـــــاز : 99165 تاريخ التسجيـل : 10/04/2009 تاريخ الميلاد : 12/06/1973 الوظيفــــــة : الهوايـــــــة : الجنسيــــــة : الدولـــــــة : المـــــــزاج : جنس العضـو : احترام قوانين المنتدى : رسالة SMS : وسائط MMS : اوسمة الامتياز :
اضافات منتديات جسر المحبة توقيت دول العالم: عداد زوار منتديات جسر المحبة:
| موضوع: المرحّلات الإثنين فبراير 22, 2010 11:07 am | |
| [size=21]Relays
A relay is an electrically operated switch. Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil current can be on or off so relays have two switch positions and they are double throw (changeover) switches.
Relays allow one circuit to switch a second circuit which can be completely separate from the first. For example a low vol***e battery circuit can use a relay to switch a 230V AC mains circuit. There is no electrical connection inside the relay between the two circuits, the link is magnetic and mechanical. The coil of a relay passes a relatively large current, typically 30mA for a 12V relay, but it can be as much as 100mA for relays designed to operate from lower vol***es. Most ICs (chips) cannot provide this current and a transistor is usually used to amplify the small IC current to the larger value required for the relay coil. The maximum output current for the popular 555 timer IC is 200mA so these devices can supply relay coils directly without amplification. Relays are usuallly SPDT or DPDT but they can have many more sets of switch contacts, for example relays with 4 sets of changeover contacts are readily available.
Most relays are designed for PCB mounting but you can solder wires directly to the pins providing you take care to avoid melting the plastic case of the relay. The supplier's catalogue should show you the relay's connections. The coil will be obvious and it may be connected either way round. Relay coils produce brief high vol***e 'spikes' when they are switched off and this can destroy transistors and ICs in the circuit. To prevent damage you must connect a protection diode across the relay coil. The animated picture shows a working relay with its coil and switch contacts. You can see a lever on the left being attracted by magnetism when the coil is switched on. This lever moves the switch contacts. There is one set of contacts (SPDT) in the foreground and another behind them, making the relay DPDT.
The relay's switch connections are usually labelled COM, NC and NO: • COM = Common, always connect to this, it is the moving part of the switch. • NC = Normally Closed, COM is connected to this when the relay coil is off. • NO = Normally Open, COM is connected to this when the relay coil is on. • Connect to COM and NO if you want the switched circuit to be on when the relay coil is on. • Connect to COM and NC if you want the switched circuit to be on when the relay coil is off. _____________________________________
Choosing a relay You need to consider several features when choosing a relay: 1. Physical size and pin arrangement If you are choosing a relay for an existing PCB you will need to ensure that its dimensions and pin arrangement are suitable. You should find this information in the supplier's catalogue. 2. Coil vol***e The relay's coil vol***e rating and resistance must suit the circuit powering the relay coil. Many relays have a coil rated for a 12V supply but 5V and 24V relays are also readily available. Some relays operate perfectly well with a supply vol***e which is a little lower than their rated value. 3. Coil resistance The circuit must be able to supply the current required by the relay coil. You can use Ohm's law to calculate the current:
Relay coil current = supply vol***e / coil resistance
4. For example: A 12V supply relay with a coil resistance of 400 passes a current of 30mA. This is OK for a 555 timer IC (maximum output current 200mA), but it is too much for most ICs and they will require a transistor to amplify the current. 5. Switch ratings (vol***e and current) The relay's switch contacts must be suitable for the circuit they are to control. You will need to check the vol***e and current ratings. Note that the vol***e rating is usually higher for AC, for example: "5A at 24V DC or 125V AC". 6. Switch contact arrangement (SPDT, DPDT etc) Most relays are SPDT or DPDT which are often described as "single pole changeover" (SPCO) or "double pole changeover" (DPCO). ________________________________________
Protection diodes for relays Transistors and ICs must be protected from the brief high vol***e produced when a relay coil is switched off. The diagram shows how a signal diode (eg 1N4148) is connected 'backwards' across the relay coil to provide this protection.
Current flowing through a relay coil creates a magnetic field which collapses suddenly when the current is switched off. The sudden collapse of the magnetic field induces a brief high vol***e across the relay coil which is very likely to damage transistors and ICs. The protection diode allows the induced vol***e to drive a brief current through the coil (and diode) so the magnetic field dies away quickly rather than instantly. This prevents the induced vol***e becoming high enough to cause damage to transistors and ICs. ________________________________________
Reed relays
Reed relays consist of a coil surrounding a reed switch. Reed switches are normally operated with a magnet, but in a reed relay current flows through the coil to create a magnetic field and close the reed switch. Reed relays generally have higher coil resistances than standard relays (1000 for example) and a wide range of supply vol***es (9-20V for example). They are capable of switching much more rapidly than standard relays, up to several hundred times per second; but they can only switch low currents (500mA maximum for example). The reed relay shown in the photograph will plug into a standard 14-pin DIL socket ('IC holder'). ________________________________________
Relays and transistors compared Like relays, transistors can be used as an electrically operated switch. For switching small DC currents (< 1A) at low vol***e they are usually a better choice than a relay. However transistors cannot switch AC or high vol***es (such as mains electricity) and they are not usually a good choice for switching large currents (> 5A). In these cases a relay will be needed, but note that a low power transistor may still be needed to switch the current for the relay's coil! The main advan***es and disadvan***es of relays are listed below:
Advan***es of relays: • Relays can switch AC and DC, transistors can only switch DC. • Relays can switch high vol***es, transistors cannot. • Relays are a better choice for switching large currents (> 5A). • Relays can switch many contacts at once.
Disadvan***es of relays: • Relays are bulkier than transistors for switching small currents. • Relays cannot switch rapidly (except reed relays), transistors can switch many times per second. • Relays use more power due to the current flowing through their coil. • Relays require more current than many ICs can provide, so a low power transistor may be needed to switch the current for the relay's coil. .
[/size] [size=21]المرحّلات
1- تعريف: هو جهاز يتعرف على أي ظروف تشغيل غير عادية في الدائرة وذلك من خلال قياس الكميات الكهربية (تيار - جهد - تردد - زاوية الطور) التى تختلف قيمها عند حدوث الأعطال في الدائرة الكهربية. وتوصل المرحلات بالدوائر الثانوية لمحولات القياس وعندما يحس المرحل بالعطل يعمل ويغلق دائرة جهاز القطع والذي يقوم بدوره بفتح الدائرة الكهربية. ويعمل المرحل على أساس ضرورة اكتشاف الظروف الغير مرغوب فيها خلال المناطق المحددة ويعمل المرحل على فصل المنطقة المتأثرة بالعطل وذلك لتجنب حدوث تدمير للأشخاص والمعدات وذلك عن طريق تشغيل قواطع الدائرة المناسبة.
2- المتطلبات الأساسية للمرحلات Basic requirements of Relays بالنظر للنتائج المتوقع حدوثها ، يجب أن يتم تصميم نظم الوقاية حتى تحقق عدد من المتطلبات الهامة وتشمل: 1-الاعتمادية Reliability: للحكم على نظام وقاية بأنه نظام يعتمد عليه (موثوق فيه) عندما يشمل كل من: * ضمان تصرف النظام بطريقة صحيحة خلال الأعطال وهو ما يطلق عليه الثقة * ضمان عدم تشغيل نظام الوقاية فى حالة عدم الحاجة وهو ما يطلق عليه الأمان وهذا يعني أن الاعتمادية على نظام الوقاية تتحقق عندما يتصرف بطريقة سليمة تحت ظروف النظم الغير ملائمة والظروف البيئية المحيطة. 2- الســـرعة Speed: بمعني أنه يجب أن تستجيب المرحلات للظروف الغير طبيعية فى أقل وقت ممكن ، وهذا يعني أن زمن التشغيل يجب أن لا يتجاوز الثلاث دورات على أساس نظم الـ 60 هرتز. 3- الانتقائية Selectivity: بمعني أن نظام الوقاية يجب أن يعطي أعلي استمرارية ممكنة للخدمة مع أقل فصل ممكن لنظام القوي. 4- بسيط واقتصادي Simplicity and Economy: الاحتياج إلى كون النظام بسيط واقتصادي هو متطلب شائع فى أي تصميم هندسي وبالتالي فى نظم الوقاية. 5- الحساسية Sensitivity: أن يعمل المرحل طبقا للأحساس بأقل قيمة ضبط.
3- أنواع المرحلات تنقسم المرحلات طبقًا لتركيبها وعملها إلى : المرحلات الكهرومغناطيسية Electromagnetic المرحلات الكهروحرارية Electro thermal relays المرحلات الاستاتيكية Static relays المرحلات الكهروديناميكية Electro - dynamic relays المرحل الفيزيائي الكهربي Physical - electric relays مرحلات الحاسوب Computer relays
4- مجالات التطبيق • تيار أو جهد أو قدرة منخفضة Under current or vol***e or power relay • تيار أو جهد أو قدرة مرتفعة Over current or vol***e or power relay • مرحل لإنعكاس القدرة أو التيار Directional or reverse power or current • مرحل تفاضلي Differential relay • مرحل مسافة Distance relay • مرحلى ممانعة Impedance relay
5- فترات التشغيل • مرحل لحظي Instantaneous relay • مرحل بزمن تأخير Definite time - lag relay • مرحل عكسي Inverse time - lag relay • مرحل عكسي ذو زمن تأخير Inverse definite minimum time lag وشكل (1) يوضح العلاقة بين الوقت الذي يعمل فيه المرحل وقيمة التيار.
6- تصنيف المرحلات هناك طريقة لتصنيف المرحلات على حسب وظائفهم طبقا للتالي: • مرحلات قياس • مرحلات ( فتح وغلق ) (on - off) و يعرف أحيانا بمرحلات ( all or nothing ) وتتضمن مرحلات التأخر الزمني (Time-log) والمرحلات المساعدة ومرحلات الفصل . والسمة الشائعة لهذه الفئة أن المرحل ليس له مستوي محدد للضبط ويتم تغذيته بكمية معينة والتى إما تكون أعلي من القيمة التى يعمل عندها أو أقل من القيمة التى يعاد عندها لوضعه الأصلي .
وفئة مرحلات القياس تتضمن عددا من الأنواع والسمة الشائعة لهذه الفئة أن المرحل يعمل عند مستوي معين سبق ضبطه وتحديده وأمثلة على هذه المرحلات كالآتي :- 1- مرحلات التيار: وتعمل عند قيمة محددة للتيار وتشمل مرحلات زيادة التيار ومرحلات نقص التيار . 2- مرحلات الجهد: وتعمل عند قيمة محددة للجهد وتشمل مرحلات زيادة الجهد ومرحلات نقص الجهد 3- مرحلات القدرة: وتعمل عند قيمة محددة للقدرة وتشمل مرحلات زيادة القدرة ومرحلات نقص القدرة 4- المرحلات الاتجاهية وتشمل: ا- مرحلات التيار المتردد: وتعمل على أساس علاقة الطور الزاوي بين الكميات المتناوبة ( المترددة ) . ب- مرحلات التيار الثابت: وتعمل على أساس اتجاه التيار وغالبًا لنظام المغناطيسي الثابت أو الملف المتحرك 5- مرحــلات التــــردد: وتعمل عند قيمة محددة للتردد وتشمل مرحلات زيادة التردد ومرحلات نقص التردد 6- مرحلات الحـــرارة: وتعمل عند قيمة محددة لدرجة الحرارة خلال الجزء المحمي 7- المرحلات التفاضلية: وتعمل على أساس الفرق بين كميتين مثل التيار أو الجهد ،وهكذا وهذا الفرق يمكن أن يكون اتجاهي أو قياسي 8- مرحــــلات المعـــاوقة: وتعمل على أساس المسافة بين محول قياس التيار والعطل والمسافة تقاس على أساس قياس المقاومة أو المفاعلة أو المعاوقة.
[/size] | |
|